Experimental characterization of high brightness Xenon and Krypton x-ray sources at the LMJ facility

```
C. Baccou <sup>(1)</sup>, G. Boutoux <sup>(1)</sup>, A. Grolleau <sup>(1)</sup>, R. Beuton <sup>(2)</sup>, C. Blancard <sup>(1)</sup>, M. Brochier <sup>(2)</sup>, F. Chermette <sup>(1)</sup>, C. Chollet <sup>(1)</sup>, V. Denis <sup>(2)</sup>, P. Dupré <sup>(2)</sup>, J. Gallaire, L. Jacquet <sup>(1)</sup>, M.-A. Lagache <sup>(3)</sup>, L. Le-Deroff <sup>(2)</sup>, M. Dumas <sup>(3)</sup>, B. Martinez <sup>(1)</sup>, P.-E. Masson-Laborde <sup>(1)</sup>, C. Meyer <sup>(1)</sup>, G. Pavloff <sup>(1)</sup>, V. Prévot <sup>(1)</sup>, M. Primout <sup>(1)</sup>, P. Rathouit <sup>(1)</sup>, P. Renaudin <sup>(1)</sup>, C. Reverdin <sup>(1)</sup>, G. Soullié <sup>(1)</sup>, M. Sozet <sup>(1)</sup>, V. Trauchessec <sup>(1)</sup>, B. Vauzour <sup>(1)</sup> and B. Villette <sup>(1)</sup>

(1) CEA, DAM, DIF, F-91297 Arpajon (France)

(2) CEA, DAM, CESTA, F-33114, Le Barp (France)
```

Over the past few years, the Laser MégaJoule (LMJ) facility has been ramping up to few hundreds of kilojoules of laser energy delivered on target. Very bright multi-keV nanosecond x-ray sources can thus be generated, for example for studying x-ray interaction with materials. We have developed an experimental platform to characterize the x-ray emission in terms of spectrum, fluence and power using absolutely calibrated time-resolved x-ray diagnostics, sensitive to soft (few keV) and hard x-rays above 10 keV. At the LMJ facility, broadband x-ray spectrometers - namely the DMX [1] and mini-DMX - as well as the narrowband High Resolution X-ray Spectrometer (HRXS) are fully operational. We conducted experiments with xenon [2] [3] and krypton [4] gas bags, chosen for their peaked emission at 4-6 keV (L-band) and 13 keV (K-band), respectively, and their good laser-to-x-ray conversion efficiency.

During these experiments, the complete set of x-ray diagnostics provided consistent measurements, allowing an absolute characterization of the x-ray fluence and an estimation of the average electronic temperature (T_e) of the plasmas. Preliminary calculations, carried out with the SAPHyR atomic physics code for Non Local Thermal Equilibrium (NLTE) plasmas, corroborate T_e estimation for the krypton plasmas, using the He-like and Ly-like spectral structures measured by HRXS.

References

- [1] J.-L. Bourgade *et al.*, Rev. Sci. Instrum. 72, 1173 (2001)
- [2] M. Primout *et al.*, Phys. Plasmas 29, 073302 (2022)
- [3] K. B. Fournier *et al.*, Phys. Plasmas 17, 082701 (2019)
- [4] M. J. May et al., Phys. Plasmas 25, 056302 (2018)